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Flow control (congestion control)
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Example:

TCP flow control & random early detection (RED)
p: Marking in an ACK packet
Xi corresponds to congestion window size.

ABR flow control
p: Congestion indication (Cl) and/or explicit rate (ER) in an RM cell
Xi corresponds to allowed cell rate (ACR)



Flow control as an optimization problem

To construct a flow control mechanism
--> To determine the following according to a policy
- How to generate p
- How to control xi according to p

@

_ Optimization based flow control

- Policy
--> To minimize the total cost, which is congestion cost
minus user utilities

- Mechanism to generate p and to control xi
--> Solution for the optimization problem corresponding
to the policy




Related works

- F. P. Kelly et al., Rate control for communication networks: shadow price,
proportional fairness and stability, Journal of the Operational Research Society,
49 (1998).

- S. J. Golestani et al., A class of end-to-end congestion control algorithms,
Sixth International Conference on Network Protocols (1998).

- S. H. Low et al., Optimization flow control, I: basic algorithm and
convergence, IEEE/ACM Transactions on Networking (1999).

= Kelly et al. (1998)

- Policy (single bottleneck case)
max, J(X) = Ei Ui(xi) - R(E. Xi)
Ui(+): Utility function of user i, strictly increasing, concave, differentiable

R(-): Congestion cost of the bottleneck link, differentiable
p(y) = d/dy R(y): shadow price, positive, strictly increasing

- Mechanism to control xi (willingness to pay type control)
it X, (1) = &, (w () - % (D) P(Z; %, (1))
Wi (1) = X (H)U’ (% (1))

Ki: control parameter




Our approach

- To consider accumulated cost, for example,

Minimize [(3; U, (x (1) - RS, % (1)) ot

- To consider stochastic models, which are queueing models



Model

Single bottleneck model: single node and multiple users
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- Poisson arrival processes:

Intensity vector A(t) = (Ai(t)) <-- control subject
- Exponential distributed services:

service rate u (the same for all the users)
- K: Buffer size, including service facility
- L(t): the number of packets in the system at time t
- Ai(t): the number of user I's packets arriving in [0, t]



User utility and congestion cost

User utility is represented as a function of throughput.

“ Ui(1(L(t) < K) Ai(t)): Instantaneous utility of user i at time t “

Ui(+): a function, non-negative, increasing, differentiable,
strictly concave

EH [UL(t-) < K)dA (t)] _ EE [ULE®) < K)A (t)dt}

1(+): indicator function

--> From this formula, 1(L(t) < K) Ai(t) can be considered as
the instantaneous throughput of user |

Congestion cost approximately represents delay and loss.

“ R(L(t)) Ai(t): Instantaneous congestion cost for user i a time t “

R(+): a function, non-negative, increasing
(the same for all the users)

Note: R(K) Ai(t) represents the instantaneous cost of loss.



Formulation 1: Expected discounted cost

To minimize the expectation of the discounted total user cost
u(t) = (ui(t)): Control parameters, i.e., Ai(t) <-- ui(t)
Bi = [bi,o, bi,1]: Range of ui(t), B=B1x ... x Bk
Uimax = Ui(bi,1) bi,1
a > 0: Exponential discount factor

- Instantaneous cost for user |

G (L(8), 24 (6)) = U e = U ((L(E) < K)A, (0)} + RILE)A ()
C(L®.AD) = T, C L), A (1)

— Objective function

J.(ulg) = lim Eu[ fOT e 'C(L(t), u(t))dt | L(0) = |O]

[ Policy (criterion)

Minimize J_(u,l,)




Result 1: Expected discounted cost

Problem 1: P1

J; (lp) = irJf J. (U l5)

Result

Assume that there exist the function V«(-) that satisfies
@ V() =infJ_ (u,l),
u

and the function v*«(+) that satisfies

2 V() = arg min{zik:lvi 1 < KV, (1 +1) -V, (1)]+ C( ,v)}.

vEB

Then, the optimal control u*« is given by
(3) U, (t) =V, (L()).

This result is directly derived from Theorem VTT-T1 in Point Processes and
Queues by Bremaud.




Formulation 2: Expected average cost

To minimize the expectation of the average total user cost

— Objective function

J(ul) = limE, [% fOTC(L(t),u(t))dt IL(0) =1,

= Policy (criterion)

Minimuze J(u,l,)




Result 2: Expected average cost

Problem 2: P2
[ J'(l,) = inf J(u,l,)
- Result

Assume that there exist the function V«(-) that satisfies
1 V()= irl]f J_ (u,l),
and the function G(+) that is a certain limit of Vo(.), I.€,
@ G(l)= Lme(Van (I +1) -V, (1)), wherea, > O asn — oo,

Furthermore, assume that there exists the function v*(-) that satisfies

5) v () =ag min{zik:lvi 11 < K)YG(I) + C(I,v)}.

vEB

Then, the optimal control u* is given by

6) U (t) =V (L(t))




Discussion

— Functions Ve(+) and G(*)
V() Is the expected total cost for the future.
V. (I)=infJ_ (u,l)
G(+) can be consiolljered as the expected cost of one packet for the future.
G() = lim(V,, (1+1) -V, ()

— Flow control (the case of expected average cost)

From equation (5), v*(+) satisfies
(7) Ui’(vi*(l)) =G(l)+R(), I <K.
Therefore, signal p(-) can be define as
p(l) = G(I) + R(l),

and the packet arrival intensities are given as the solution of

(P3) inf{vp(L(D) - U, (%)}

Note: p(-) corresponds to a shadow price and (P3) to Kelly’s willingness
to pay type control.




Further study

- How to generate signals using only data obtained
by the network

- Analysis of a model that includes delay of signal



